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A method is presented for integrating numerically the equations of motion for 
a compressible free shear layer developing from a boundary-layer profile of 
arbitrary shape. Sutherland's law is used to determine the coefficient of viscosity 
and the Prandtl number is taken as 0.72. Calculated results are reported for 
free-stream Mach numbers ranging from 0 to 10 and for stagnation-enthalpy 
ratios ranging from 0 to 5.0. The effects of varying the initial boundary-layer 
profile and of a discontinuity in temperature at the origin are also studied. The 
results include graphs showing the development of dividing-streamline velocity, 
of local Nusselt number, and of dividing-streamline location. 

1. Occurrence of free shear layers in nature 
When free shear layers exist as separate entities, as for instance in the atmo- 

sphere or ocean, they are usually considered to be fully developed for all practical 
purposes. In  addition, they are almost always either turbulent or mixing layers 
forming at the interface of two different fluids. Thus, generally speaking, the 
development of a laminar free shear layer from some sort of boundary-layer 
profile is only important when the shear layer is a component of a more com- 
plicated flow field. The flow about a bluff body provides a good example. To see 
how free shear layers are formed under these circumstances it is necessary to 
study the flow patterns corresponding to the limit Re + co. Owing to the presence 
of certain singular surfaces, known as free streamlines, these patterns are 
fundamentally different from the potential-flow (Re = 00) ones.? The presence 
of a free shear layer is required by nature to smooth out the infinite velocity 
gradient at  the singular surface. 

Owing to their instability these limiting flow patterns rarely occur at subsonic 
speeds and are largely of academic interest only. On the other hand, the hyper- 
bolic character of the inviscid flow field in the supersonic regime has a stabilizing 
influence, and the corresponding limiting flow patterns should be of considerable 
practical importance for the solution of many separated-flow problems. The 
rearward- and forward-facing steps, blunt-based bodies and rectangular cavities 
are typical examples. Indeed, a well-known method of approach due to Chapman 

t These patterns are discussed by Batchelor (1956). 
5 0  F L M  5 0  
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(1950) and Korst (1956) assumes that the processes in the free shear layer 
dominate the entire flow field in such phenomena. 

In reality it seems probable that the shear layer usually develops between a 
subsonic vortical region and a supersonic stream. However, this paper deals 
with the simpler problem where the vortical region is replaced by a quiescent 
one. This is considered to be a necessary prelude to the solution of the more 
difficult problem. In addition it might be noted that the Chapman-Korst model 
theories also usually assume a ‘dead-air’ region. 

I 

Rccornpression shock wave 

FIGURE 1. The free shear layer as a component of the flow field behind a blunt-based body 
travelling at a supersonic speed. 

Figure 1 shows the free shear layer as a component in the flow field behind a 
blunt-based body travelling at a supersonic speed. This provides an example of 
a separated-flow phenomenon where the properties of a developing free shear 
layer are of paramount importance. In  order to carry out engineering calculations 
on such flows it is necessary to h o w  the values of such parameters as the heat- 
transfer coefficient and velocity at the dividing streamline. (The dividing stream- 
line separates the air once in the body boundary layer from that entrained from 
the recirculation region.) For the purposes of calculation it is commonly assumed 
that these parameters have their fully developed self-similar values along the 
length of the dividing streamline. 

One of the objects of this paper is to examine the accuracy of this assumption 
when the free-stream Mach number MI and temperature (or total enthalpy) T2 
(or H,) in the recirculation region are varied, given a particular initial boundary- 
layer momentum thickness &,**. Since there can be considerable heat transfer 
both through the base wall and from the body boundary layer, it  is quite possible 
for the temperature T, at the surface of the body boundary layer just before 
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separation to be considerably different from that in the recirculation region. 
Therefore the effects of this situation on the shear-layer development are ex- 
amined. Finally, the influence of the actual shape of the body boundary-layer 
velocity profile is examined, although the effect of the Prandtl-Meyer expansion 
is not considered explicitly. 

2. Discussion of problem and its main diflCiculties 
After making the boundary-layer approximation and assuming constant 

pressure, the continuity, momentum and energy (in total enthalpy formulation) 
equations may be writtert as follows. 

a a 
- ( p u  6) + - (pv r;) = 0, 
ax aY 

au au 
pu-+pv-=-  ay a”y( p- :;)’ ax 

PU-++PV- =- -- H + ( a -  1)- , ax ay ay g a y  “11 2 (2.3) 

0, plane shear layer 

1, axisymmetric. 
where v = {  

r0 is the distance of the free streamline, or inviscid jet surface, from the axis of 
symmetry; H = C, T + +u2, the total enthalpy; cr = C,p/k, the Prandtl number. 

The objective is to obtain an accurate numerical solution to (2.l), (2.2) and 
(2.3) subject to the boundary conditions given below. 

u+ul, H - t H ,  as y +  +a, 
u+O, H + H 2  as y + - a ,  

v = 0 a t  y = yo(x)  

where yo is the position of the dividing streamline, so-called because it is the 
interface between air once in the boundary layer and that entrained from the 
quiescent region. 

The method of integration is to be applicable for any initial boundary-layer 
profiles, i.e. arbitrary ui (y)  and H,(y), and for any value of H,/H,. Quite apart 
from the obviously difficult task of integrating numerically a complicated system 
of second-order non-linear partial differential equations over an infinite domain, 
the problem of the free shear layer possesses two special difficulties. These make 
it more interesting in some ways than the corresponding attached boundary 
layer. The two difficulties referred to are as follows. 

(i) Apparent non-uniqueness of the solution. Note that the position of the 
50-2 
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dividing streamline, yo(x) ,  in (2.4) is unknown a priori. However the equations 
may be solved in the xu plane, leaving the orientation in space arbitrary. Ting 
(1959) has shown that in order to fix y,(x) it is necessary to investigate the higher 
order corrections to the boundary-layer solution. This is in sharp contrast to the 
attached boundary layer where the zeroth-order solution can be determined 
uniquely, independently of the higher order corrections. 

(ii) Xingularity at the origin. This singularity has two aspects. First, as pointed 
out by Goldstein (1930), if the initial velocity profile is specified arbitrarily, 
without regard for the pressure distribution, then, in general, the existence of 
an algebraic singularity at the origin seriously hampers any attempt to continue 
integration downstream. To understand this note that a t  (0,O) u = 0 and v = 0 
but in general a(pau/ay)/ay $: 0, therefore in order to satisfy the momentum 
equation (2.2) &/ax must be O(u-l) as y --f + 0 at x = 0. Of course, strictly speak- 
ing this shows that near the origin the boundary-layer equations are no longer 
valid. However this is ignored, the justification being the small extent of the 
region of invalidity. Second, a discontinuity in the boundary conditions arises 
at the origin, since at x = 0, u = 0 and H = flw (T = T,) at y = 0; whereas under 
the limit x + + 0 ,  u --f 0 and H + H, (T 3 T.) as y + -a. 

To date no solution for the developing free shear layer successfully overcoming 
both these difficulties appears to have been published. However, Denison & 
Baum (1963) have obtained results corresponding to a Blasius profile as initial 
condition. They used a local expansion, suggested by Goldstein (19301, to tackle 
the singularity at the origin. The problem of determining yo was left unsolved. 

3. Analysis 
The choice of the method of numerical integration was dictated to a large 

extent by the difficulties discussed in the foregoing section. Because of these it 
is desirable to carry out the integration in Crocco co-ordinates. The use of these 
co-ordinates has three main advantages: (i) The solution is independent of y,(x) 
in the x u  plane, allowing yo($) to be determined a posteriori. (ii) It removes the 
difficulty of the discontinuity in the velocity boundary condition. (iii) The domain 
will be bounded. 

Concomitant with these assets, however, is a difficulty in the shape of trouble- 
some singularities at u = 0 and u = ul. A modification of the Dorodnitsyn (1962) 
method of integral relations was considered to provide the best means of dealing 
with these singularities and the remaining problems at the origin. This method 
also has advantages for avoiding numerical instabilities. 

Essentially, when this technique is employed, the solution is carried out in two 
main stages. First, the system of partial differential equations is reduced to one 
of first-order ordinary differential equations. Then this system is integrated 
numerically using some suitable technique. 

The initial stage in the reduction is the derivation of two sets of integral 
relations. Suppose there exist two sets of weighting functions fj(u) and gk(H) 
which are linearly independent and piecewise continuous in u. (Additional re- 
quirements will beimposedlater.) Now mutliply(2.1) byf,(u) and (2.2) byr;df,/du 
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and integrate their sum with respect to y from - co to + 00. Thereby the following 
system of equations is obtained. 

Now in order to eliminate 9 from (3.1) it is required that 

f,(%) =fjW = 0. ( 3 4  

Integration of the right-hand side by parts leads to the following set of integral 
relations. 

A similar operation with (2.3) and the gk(H)  results in a second set of integral 
relations, viz. 

where k = 0, 1,2, ..., and the requirement 

(3.5) 
has been imposed. 

Now the reduction of equations (3.3) and (3.4) to a, system of first-order 
ordinary differential equations is effected. The integral relations (3.3) and (3.4) 
are non-dimensionalized, using the following definitions: 

g k ( W  = 9 k W 2 )  = 0 

z = x/L,  ij = y / L ,  ?i = u/ul, 

= HI% P = PIPI, F = PIP1, 

L being some characteristic length (e.g. the boundary-layer momentum thick- 
ness at the origin, a,**). Next the transformation 

is applied. This is done because ultimately it is necessary to integrate the left- 
hand sides of the integral relations analytically. In  addition, the relations are 
now independent of r,, and Reynolds number. Finally, the integral relations are 
cast into Crocco co-ordinates, producing 

Ufj(21) g( '5 ,U)di i  = - F i i f ; ( G ) b i i  (j = 0, 1,2, ...), (3.7) 3: - s,' 5 

where 5([, a) = @la?i. 
Partly because of the difficulty with the boundary-condition discontinuity at 

the origin and partly owing to the asymptotic behaviour of 5([, 21) and act, 21) 
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at U = 1 and 0, it is virtually a necessity to divide the domain into two strips. 
The dividing streamline provides a logical choice of interface.? 

Designating quantities in the upper and lower strips by superscripts u and 1 
respectively, the following choices of weighting functions are made. 

(k = 0,1,2, ...), (3.10) I gL(R) = B k + l - A k + l  (ii; < U,), 

gl(B) = B k + l -  1 (5 > a,), 
where h = HJH,. 

expressions. 
The dependent variables [(g, ii) and R(C, U) are approximated by the following 

and 
N 

n=l 
R‘(& U) = {A  + (1 - A )  s} c d,(EJ Tin-1 (U < Go), 

N 

n=l 
By(,  s) = {A + (1 - A )  E} c c&-) (1 - q n - 1  (U > 2,). 

(3.12) 

Approximating in this way takes care of the singularity at U = 0 and 1. The 
functions of U premultiplying the polynomials in (3.11) and (3.12) were de- 
termined by an asymptotic analysis of (2.1), (2.2) and (2.3) in Carpenter (1970). 
The coefficients b, can be obtained in terms of a, and so by requiring continuity 
of < and it5 derivatives of all orders up to M - I ,  at the dividing streamline. 
Similarly the dn are found in terms of the cn by requiring continuity of B and its 
derivatives. 

If the above expressions and approximations are substituted into (3.7) and 
(3.8) and the left-hand side integrals evaluated analytically, the result is a system 
of first-order non-linear ordinary differential equations. The dependent variables 
are U,; ul, ... ,uM;cl ,  ..., cN.M + 1 oftheequationsarefurnishedbyequations(3.7), 
with the remaining N coming from equations (3.8). The system can be represented 
succinctly by using a matrix formulation 

AijdBj/d(  = Ci (1 < i , j  < 1 + M + N ) ,  (3.13) 

where repeated indices are summed, A,* and C, depend on [ and the dependent 
variables B j .  The Ci are found by integrating the right-hand sides of (3.7) and (3.8) 
numerically. 
As things stand the matrix Aij is singular at g = 0. This is because of the 

algebraic singularity at  the origin which results in dii,/dg --f 00 as [ + + 0. This 
difficulty is overcome by replacing U, with @$ as dependent variable. (The 
physical significance of this parameter will be discussed in the next section.) 

Since u = 0 a t  y = yo this choice obviates any additional restrictions on the weighting 
functions for preserving the validity of (3.3). 
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Clearly the boundedness of d($iii)/d[ = i iodiio/dt  follows directly from the 
momentum equation, The discontinuity in the boundary condition on B is 
handled by setting c,(O) = H,/H, = &,. 

It can be shown that if the number M of the coefficients a,,([) in equation (3.11) 
is even, then it is impossible to simultaneously satisfy both the condition that 
a, and b, be positive and that 

Therefore only odd integral orders of approximating polynomials are admissible 
in (3.11). 

The location of the dividing streamline must now be determined. The require- 
ment that the normal stress be continuous has been used by Lock (1951) to 
fix yo for the heterogeneous free shear layer. But in the homogeneous case he 
found that the continuity condition was automatically satisfied. Therefore he 
concluded that in this instance the position of the interface was indeterminate. 
However, this automatic satisfaction ceases to occur when the higher order 
correction terms to the boundary-layer solution are considered. This allows 
Lock's principle to be extended to compressible homogeneous mixing. 

The extended principle may be stated as follows. The 'displacement ' effects of 
the shear layer on the main and secondary streams produce a higher order correc- 
tion to the predicted flow field. The dividing streamline must be oriented such that 
this correction maintains a continuous normal stress across the entire shear layer. 

This principle was introduced by Ting (1959) who applied it by carrying out 
an asymptotic analysis of the Navier-Stokes equations. He found that the prin- 

w(2, +a) = 0 
ciple leads to the condition (3.14) 

for the shear-layer solution. Carpenter (1970) has shown that this may be re- 

(3.15) 
written in the form 

1 d8, _ -  - 0,  
- d%l 
dc +G(l  -i50iio) d[ 

where 8, =Ql-pU)dg. 

It also transpires that Ting's simple matching procedure breaks down in the 
general case of a free shear layer developing along a curved free streamline. 
Consequently (3.15) would no longer be applicable. Nevertheless, Carpenter 
(1970) has shown that it still remains a reasonable approximation in some cases. 
Equation (3.15) is, in effect, a first-order ordinary differential equation for go 
and can be integrated step by step as the main integration proceeds downstream. 

4. Discussion of results 
Extensive numerical calculations were performed for air a t  a free-stream 

st,agnation temperature of 275 "K. The approximations of C ( t ,  U) and g(( ,  U) 
were made using six parameters, namely a1,a2, a3, cl, c2 and iiii (i.e. M = 3, N = 2).  
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Consequently it was necessary to integrate a system of six first-order ordinary 
differential equations. This was accomplished by marching downstream, using 
the simple trapezoidal rule with a matrix inversion. The step size was determined 
by requiring a specific increment in one of the dependent variables, usually &i$,. 
The integration was normally continued until asymptotic fully developed con- 
ditions were attained for all practical purposes. 

Sutherland’s law was used for the coefficient of viscosity. The Prandtl number 
was set at 0-72. The coefficient of thermal conductivity was assumed to vary 
as (Brown & Donoughe 1951). The free-stream static temperature was 
taken to correspond to an isentropic expansion from M = 0 to Nl. The Blasius 
profile in ;tl, y co-ordinates was taken as the initial condition, except for figure 9. 

Probably, the development of free shear layers can best be understood physic- 
ally in terms of a vorticity transfer.? Since vorticity cannot be created in the 
interior of the fluid, the vorticity flux? per unit time through a cross-section of 

0.6 

0.5 

0.4 

0.1 

1 0 - 2  10-1 1 10 102 103 

vlx Jul 6g*z 

FIGURE 2. The effect of compressibility on the development of velocity a t  the dividing 
streamline with the Blasius profile in 6, 7 co-ordinates used as an initial condition. 
HzIH, = Hw/H,  = 1.0; Pr = 0.72; free-stream stagnation temperature = 275 “K; 0, 
Denison & Baum (1963). 

the free shear layer remains constant. Thus if the boundary-layer approximation 
is used, the proportion of the vorticity flux below the dividing streamline is 

t Following common usage the word ‘vorticity’ is used rather loosely here. Strictly, 
one means ‘circulation transfer’ and ‘circulation flux’. 
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Thereby the physical significance of this parameter, which was used in the 
analysis, is made clear. 

At the origin a discontinuity in the vorticity profile exists and consequently 
vorticity diffuses to the lower stream to smooth out the infinite gradient. As the 
diffusion continues, the driving gradient is decreased by the smoothing-out pro- 
cess and the level of vorticity at the dividing streamline rises. Eventually, 
sufficient vorticity is transferred for it to reach a maximum at the d i v i b g  
streamline and the diffusion across it ceases so that the asymptotic condition is 
achieved. 

One would surmise that since the effect of compressibility is to intensify the 
diffusion process, then the development of a free shear layer to asymptotic con- 
ditions would be more rapid the higher the Mach number. Examination of 
figure 2 shows this to be, in fact, true. 

I I 1 1 1 1 1 1 )  I I l 1 1 1 1 1 (  I I I111lI) I I l l 1 1 1 1 ~  I I 1 ) 1 1 1  

30 

FIGURE 3. The effect of compressibility on the position of the dividing streamline with the 
Blasius profile in 6, 7 co-ordinates used as an initial condition. H,/H, = Hw/H,  = 1.0; 
Pr = 0.72; free-stream stagnation temperature = 275 OK; the wider scale corresponds to 
case of M ,  = 10. 

It is a rather singular feature of the free shear layer that the asymptotic 
value of E,, does not alter significantly with MI. That is to say, the lower stream's 
share of the total vorticity flux is virtually unaffected by compressibility. No 
explanation is presented here, although it might be noted that the vorticity 
transferred relative to the x axis does increase with MI since at higher Mach 
numbers the dividing streamline is deflected downward by a greater amount, 
as is shown in figure 3. 
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Some points calculated from the results of Denison & Baum (1963) are also 
shown in figure 2. A comparison between these and the M, = 0 curve gives a 
good indication of the accuracy of the results presented herein. The small dis- 
crepancy occurring during the early stages of development is undoubtedly partly 
due to the small difference between the Blasius profile and its three-parameter 
(uo, a, and u2) approximation. However, the small size of Denison & Baum’s 
original figure, and the necessity of transforming from semi-log co-ordinates to 
natural ones and back again, made precision impossible. Therefore the size of 
the discrepancy may well have been exaggerated. In any case, the fact that the 
exact asymptotic value of Go according to Chapman (1949), namely 0.587, is 
attained in the M, = 0 case indicates very satisfactory accuracy for the later 
stages of development. 

0 

- 0.025 

-0.10 

-0.125 

-0.15 
10-2 10-1 1 10 1 0 2  103 

Vl x/ul 8,. *2 

FIGURE 4. The effect of compressibility on the development of the local Nusselt number 
with the Blasius profile in 6, 7 co-ordinates used as an initial condition. 

H , / H ,  = H w / H ,  = 1.0, Pr = 0.72, 

free-stream stagnation temperature = 275 OK, AT = T,/T,. 

The effect of compressibility on the heat-transfer properties is illustrated in 
figure 4. The local Nusselt number at  the dividing streamline is defined as 

Thus the heat transfer is positive when passing from the quiescent region to the 
main stream, in which case TI < T, and Nu, < 0. 
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FIQURE 6. The effect of change in the total enthalpy ratio h on the development of velocity 
at the dividing streamline with the Blasius profile in a, 7 co-ordinates used as an initial 
condition. M ,  = 3.0, H w / H ,  = H,/H,,  Pr = 0.72, free-stream stagnation temperature = 
215 OK. 

FIQWE 6. The effect of change in the total enthalpy ratio h on the development of the 
local Nussolt number with the Blasius profile in 6, 7 co-ordinates used as an initial con- 
dition. M ,  = 3.0, H w / H ,  = H J H , ,  Pr = 0.72,free-streamstagnation temperature = 275 "K 
AT = TJTI. 



796 P. W. Carpenter 

As might be expected, the greater temperatures associated with the higher 
Mach numbers are responsible for increased conduction rates, leading to a more 
rapid achievement of asymptotic conditions. Nevertheless, the final level for 
the heat-transfer coefficient steadily declines with an increase in Mach number. 
This is a direct consequence of viscous heating. Dissipation reaches its maximum 
at the point of peak shear stress, viz. the dividing streamline, bringing about a 
decrease in the effective temperature difference between this point and the main 
stream. 

J' 

Yl 

FIGURE 7. The general shape of the fully developed temperature profle for 
the case of T,/T, < 1. 

The effects of changing the total enthalpy ratio hare illustrated in figures 5 and 
6. The calculations were performed with MI = 3.0. Since an increase in h leads 
to higher dividing streamline temperatures, it  is predictable that the diffusion 
rate will rise. This implies a more rapid growth to asymptotic conditions. Figure 5 
confirms this prognostication. Once again the effects of viscous dissipation lead 
to the rather eccentric results corresponding to values of h below 1.0 in figure 6. 
The temperature profiles corresponding to these curves have the general shape 
shown in figure 7 when fully developed. 

The peak in the profile occurs because of viscous heating. In  the early stages 
of development the locus of the points of maximum shear stress (where the 
effects of viscous dissipation are greatest) lies well above the dividing streamline. 
Consequently the temperature profile's peak is also located above yo. I n  this 
way the initially negative Nusselt numbers for h = 0 and 0.25 are explained, 
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However, as development progresses, the point of maximum shear stress moves 
towards the dividing streamline until the temperature gradient becomes negative 

The shear layer behaves very similarly when Tl is slightly greater than one, 
e.g. see the curve in figure 6 corresponding to A = 0.5 (or A, = 1.4). However, 
in this case since Tl - Tz is now positive the Nusselt number changes sign. When 
Tl becomes greater than or equal to approximately 26T2 the heat transfer at 
the dividing streamline is positive throughout development. 

at Yo. 

Y 

1 0 - 2  10-1 1 10 102 I 03 

Vl  x/ul s,. *2 

FIGURE 8. The effect of a discontinuity in the total enthalpy ratio a t  the origin on the 
development of velocity at the dividing s t red ine .  MI = 3-0, HJH, = 2.0, Pr = 0.72, 
free-stream stagnation temperature = 276 OK. 

It is interesting to note that at  a Mach number of 3.0, for which the calculations 
for figure 6 were performed, it is impossible to obtain negative heat transfer at 
the dividing streamline for a fully developed free shear layer. This means that 
the asymptotic level of the heat transfer is always such that heat flows towards 
the free stream at the dividing streamline. When A exceeds 0.75 it appears from 
figure 6 that the asymptotic value of Nu,(ulx/vl)* becomes approximately 
invariant with A having a value of about -0-135. In addition, it could be re- 
marked that figure 6 shows that for h < 0.5 (i.e. hot free stream) an estimate of 
heat transfer across the dividing streamline based on asymptotic conditions 
would probably be in serious error unless V ~ X / U ~ ~ ~ * ~  exceeded 1000. However, 
in the case of A > 1.0, it  is sufficient only that vlx/u18~*2 be greater than 10. 

Figure 8 shows the effect of a discontinuity in the total enthalpy ratio a t  the 
origin. The results are quite predictable although the magnitude of the effect is, 
perhaps, surprising. 
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The growth of G,, corresponding to three different initial velocity profiles is 
shown in figure 9. Falkner-Skan (1930) profiles were used, with the parameter, 
p, set at  - 0.18, 0 and 1.0. Evans (1968) provided the data for the profiles which 
were assumed invariant with Mach number when cast in T i ,  7 co-ordinates. It can 
be seen that a t  M, = 3.0 the influence of the shape of the initial profile is slight. 
However, the effect may be expected to be stronger a t  lower Mach numbers. 

0.6 

0.5 

0.4 

QO 

1 I 1 1 1 1 1 1 1  I I I 1 1 1 1 1 1  I I I 1 1 1 1 1 1  I I 1 1 1 1 1 1 1  I I I l l 1  

10-2 10-1 1 10 1 02 103 

vlxJul 8,**2 

FIGURE 9. The development of velocity at the dividing streamline for different initial 
velocity profiles with the Falkner-Skan family of profiles in Q, 7 co-ordinates used as 
initial conditions. B is the Falkner-Skan parameter, M ,  = 3.0, H , / H ,  = H w / H ,  = 1.0, 
Pr = 0.72, free-stream stagnation temperature 275 OK. 

5. Conclusions 
(i) The method of numerical integration presented could easily be modified 

for application to more involved problems, e.g. the case of u2 + 0, and confined 
mixing. 

(ii) The calculated results indicate that both compressibility and stagnation 
enthalpy difference have a great influence on the development of free shear 
layers. 

(iii) The development is also strongly affected by a temperature discontinuity 
a t  the origin. 

(iv) The influence of the form of initial velocity profile is only appreciable during 
the early stages of development. 

(v) Calculations for the heat transfer across the dividing streamline, based 
on asymptotic conditions, are unlikely to be accurate unless v1x/u1S$*2 exceeds 
1000 when H, is less than 0.5H1. 
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